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PRIMES IN ARITHMETIC PROGRESSIONS 

OLIVIER RAMARE AND ROBERT RUMELY 

ABSTRACT. Strengthening work of Rosser, Schoenfeld, and McCurley, we es- 
tablish explicit Chebyshev-type estimates in the prime number theorem for 
arithmetic progressions, for all moduli k < 72 and other small moduli. 

1. INTRODUCTION 

In many applications it is useful to have explicit error bounds in the prime 
number theorem for arithmetic progressions. Furthermore, in numerical work, such 
estimates for small moduli are often the most critical. Let us recall the usual 
notation, where x > 0 is real: 

0(x; k, 1) = E3 ln(p), where p denotes a prime number; 
p-I=(k) 

p?x 

'b/(x; k, 1) = E3 A(n), where A(n) is Von Mangoldt's function. 
n=_I(k) 

n?<x 

Here we obtain estimates of the type 

(I1- ) -k < 0(x; k, 1) < f (x; k, 1) < (I + E) (1c (-)(p (k) ok 

for all moduli k < 72, all composite k < 112, and 48 other moduli; (p(k) denotes 
Euler's function. 

To obtain such estimates for the progression with modulus 1, Rosser and Schoen- 
feld ([8, 9, 11]) developed an analytic method which combines a numerical verifica- 
tion of the Riemann Hypothesis to a given height together with an explicit asymp- 
totic zero-free region. McCurley ([3, 4, 5, 6]) adapted this method to progressions 
with modulus k > 1. However, except for k = 3, he got poor numerical results 
because of the paucity of numerical work on the Generalized Riemann Hypothesis. 
Recently, the second author [10] did such computations, and we get reasonably good 
results for all moduli accessible from his list. In fact, the results are better than 
one would expect, owing to a smoothing process implicit in the method, explained 
in ?4.4. 
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Our main theoretical result is Theorem 4.3.2, which provides an easy way to 
get applications like Theorem 1 below. In Theorem 3.6.2 we also establish a zero- 
free region for Dirichlet L-functions, valid for heights Itl > 1000, which improves 
somewhat on the region found by McCurley [4]. 

Finally, we mention that this paper is an important step in a forthcoming paper 
by the first author, in which it is proved that every even integer can be written as 
a sum of at most 6 primes. 

Our main numerical result is the following: 

Theorem 1. For any triple (k, e, xo) given by Table 1 (see ?5), and any 1 prime 
to k, we have 

max 10(y;k,l)- Yk I < Efk forx > xo, I<y<x (p~(k) - p p(k) 

max Jb(y; k, I)- (k) I < _ for x > xo. 
I<y<x (~p(k) - c(k) 

For example, if k = 1, 

? 0.000213 for xo = 1010, e = 0.000015 for xo 1013, 

? = 0.000001 for xo = 1030. 

If k < 13, one can take 

? = 0.004560 for xo = 1010, e = 0.002657 for xo =103, 

? = 0.002478 for Xo = 1030, e = 0.002020 for xo 10100. 

If k < 72, one can take 

? = 0.023269 for xo = 1010, e = 0.011310 for xo 1013, 

? = 0.010484 for xo = 1030, e = 0.008672 for xo 10100. 

We have supplemented these analytic results with a tabulation up to 1010, ob- 
taining surprisingly uniform bounds: 

Theorem 2. For all moduli k in Table 1, and all I prime to k, uniformly for 
1 < x < 101 

<max 0(y; k, I)- 
y < 2.072vx, _<< (p(k) 

ma p( )(y; k, < 1.745/x. 

In particular, for a bound of the type in Theorem 1 when xo < x < 1010, one can 
take 

?= 2.072p(k)/ x0. 

Sharper bounds for individual moduli are given in Table 2 (see ?5). Especially, for 
k = 5 or k > 7, the constant 1.745 in the error bound for 'b(x; k, 1) can be replaced 
by 1.000, and for k = 1 it can be replaced by V2. 
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2. NUMERICAL RESULTS ABOUT THE GRH 

Throughout the paper, p always stands for a prime and the gcd of k and I is 
written (k, 1). 

The letter p always denotes a nontrivial zero of a Dirichlet L-function, i.e., a 
zero with 0 < Rp < 1. We will always write p = 3 + i'y. 

Given a Dirichlet L-function L(s, X), the set of its zeros with 0 < 3 < 1 will be 
denoted by Z(X). Thus, if X' is induced by X, then Z(X') = Z(X). 

Given a nonnegative real number H, we will say that L(s, X) satisfies GRH(H), 
the Generalized Riemann Hypothesis to height H, if all its nontrivial zeros with 

1y < H verify 3 12 

It is possible to prove or disprove GRH(H) for any given H and L(s, X) with only 
a finite amount of computation. Rumely [10] did such computations, obtaining: 

Theorem 2.1.1. 
o Every L-function associated with a Dirichlet character of conductor k < 13 

satisfies GRH(10000). 
o Every L-function associated with a Dirichlet character of conductor in the sets 

{k < 72}, 

{k < 112, k not prime}, 

{116,117,120,121,124,125,128,132,140,143,144, 

156,163,169,180,216,243,256,360,420,432} 

satisfies GRH(2500). 

Sharper results for individual moduli, together with bounds for the sums 

1P 
1Im(P)IAH 

PEZ(X) 

may be found in Tables 1 and 5 of [10]; these results were used in computing Table 
1 below. The following facts about the Riemann zeta function were also used: 

((s) satisfies GRH(545439823.215) 
(van de Lune, te Riele, and Winter [2]); 

for H= 12030, E < 9.056 
Im(p)I<H 

(R. S. Lehman, cf. Rosser and Schoenfeld [9]). 

3. ZERO-FREE REGIONS FOR L-FUNCTIONS 

This part follows McCurley [41 and some evaluations are taken directly from 
McCurley's paper without being re-established. We employ a device due to Stechkin 
[12] to widen the zero-free region. 

Let s = a + it and s1 a, + it be complex numbers with Itl > 1000 satisfying 

(3.1) -1<cf< 1+2 1+2 

.~ ~~ ={ I ^{T 
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and put (<a) = 
' 

4 . Note that 1/v5 < ',(a) < 0.61004, and that a > K(a)au. 

These assumptions on a and cr1 will hold throughout the paper. 
We define the auxiliary function 

(3.2) f(t,X)K (V' A(n)(n "(() Xn| na nUl ,Ini 

and introduce constants 

aO = 11.1859355312082048, 

a1 - 19.073344004352, 

l = 0.0067, a2 = 11.67618784, 

(33) = 10i6 a3 = 4.7568, 

Ia4 = 1, 

A = a1 + a2 + a3 + a4 = 36.506331844352. 

3.1. A device of Stechkin. 

Lemma 3.1.1 (Stechkin). Let z be a complex number with 0 < Rz < 1. Put 

1 1 F(s, ) = {s - z +s - 1-Z)} 

Then 
F (s, z) > r,(a) F(s 1, z). 

Moreover, if Q?z = Qts and 2 < fz < 1, and if S(o-) -1 + t<(o) ( + 
then 

-t ( (1 ? r)()F(s1, z) < S(cr). 

Proof. The first inequality is implicit in Stechkin [121: see the top line on p.132 of 
the English translation. For the second inequality, note that when Oiz = t, 
then, writing z = ,3 + it, the left side of the inequality becomes 

For 2 < < 1, both terms are increasing with 3. Taking 3 = 1 we obtain the 
result. a 

As will be seen later, we will only need to consider a in the interval [1,1.062]. 
Although we will not use this, it can be shown that on [1, 1.062] 

S() = 24 +?-?86 A + O(z\3/2), 
25 

where A = a - 1 and the implied constant can be taken as 18. Furthermore, 
throughout the interval, 

2- + 3A < S(o) < 2v'@ + 5A. 
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3.2. Handling the F-factor. 

Lemma 3.2.1. If O < a < 2, El = 0.0067 and ?2 = 10-6, then for Itl > 1000 

2 {r( 2 )c(fr( 2 )} -2( (l(2l)?-0 

Proof. We follow Lemma 2 of McCurley ([4]). Since W (Jr (z)) is invariant under 

z -* z, we have for z x + iy, with x > 0: 

F' (z +aN(yNl( x+ a 
2 x+a 

(3.2.1) ( 2)=ln( )+2ln+ ( ) -(? + -)2? I2 + 3(Y) 

where e(y)I < $1 - arctan (x+a)] < t2. We apply this, taking z s, si. 

Using a > n(a)al, we find 

(a + a)2 + t2 (a, + a)2 + t2 

-ln1+ (<) 

1 ~~~~1.26453 
(1 + E(f)(t) ? 

These facts, together with (1 - ,(o))/2 > 0.19498, yield the result. D 

3.3. Approximating f(t, X). Here the character which is the argument of f(t,.) 
is assumed to be primitive. 

Lemma 3.3.1. If Xo is the trivial character and 

E(u) = 1.08699 + 1.40018vo -1 + 1.86576(u- 1) + 2.32244(u- 1)3/2, 

then for 1 <o < 1.062, 
1 

f (0, Xo) < _ 1E(_) 

Proof. We follow McCurley's Lemma 3 ([4]). We have for any complex number z 

1 In(wr) F' z +2 1 
(3.3.1) -G7(Z) 1z- 1 2 2F 2 S P 

peZ(xo) 

where E, is to be understood as limT,,, Epl, l AT. We use (3.3.1) for z a. Since 

for any zero of (, we have 1yl > 10 > a - 3, we see that 

(3.3.2) (5- 
- rn2 ? y2 - (1 -p)2 + y2 
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It follows that 

f(0, xo) = - (u) + siujiui) 

1 _ln(7r) IF' _+ 2)_ 

-i 2 2 e(o 

We recall McCurley's estimate (taken from the proof of Lemma 3 of [4]) 

1'a + 2) Co l + (7r2 i)( ) 
2 8 l( 1( ) 

where Co - 0.5772156649 denotes Euler's constant. Further, by (Landau [1, ?76, 
pp. 316-317]), 

1 \ 1 1co 
(3.3.3) E 

' 
= E - 2 -2 ln(7r) - ln(2) + I + 

Thus, we can take 

(3-3.4) E(af) =Co -( -1) (a -1) + /c(C) (-(a,5)) 

We now estimate - (/) (u), which is a decreasing, nonnegative function of ,1. 
As a - 1+, ul approaches (1 + 5)/2 from below. Writing A = a- 1, we have 

1 + V51 - ( )A1/2 + (4)A - (4) A3/2 + ((4)A2 + (1)A5/2) - 

2 

For 0 < A < 0.062 the series inside the radical is alternating, with decreasing terms. 
Thus 

I + V5 ()t/ + (4)'A 
1+< ~~~~ ~~2 

Upon expanding and using A < 0.062, we obtain 

1 + 5 (i - 1 (8 1/2 - 4A) 1 (8 A 1/2 -4 ) 
2 

< 2 

1 + 5-(1l (4),A1/2 + 4 ),A) < 1+(-5) /+25) 

2 

It follows that 

(1 + \/5)/2 - > (A2.)A1/2_ (525)A 

When -('//)(ui) is developed as a Taylor series about (1 + 5)72, its coefficients 
alternate in sign. The first four coefficients satisfy 

Bo > 1.13991, -B1 > 2.48089, B2 > 4.20397, -B3 > 6.84664; 



PRIMES IN ARITHMETIC PROGRESSIONS 403 

these values were obtained by expressing the coefficients in terms of the deriva- 
tives of the zeta function, which were computed using Euler-Maclaurin summation. 
Thus, 

-(('/()(Ui) >1.13991 + 2.48089 ( - A ) 

+4.20397 (2 - j,gA) + 6.84664(0.84988A)3 

> 1.13991 + 2.21897 A + 2.91938A + 2.85764A3/2. 

(Here we have again used that 0 < A < 0.062.) Inserting this in (3.3.4) yields 

E(u) > 1.08699 + 1.40018A 1/2 + 1.86576A + 2.32244A3/2 

and for the purposes of the lemma we can replace E(a) by its bound. O 

Lemma 3.3.2. If X is a character of conductor k, then for Itl > 1000 and E1 = 

0.0067, 
1- s(C~) ( k(ItI)?l 

f (t, X) < 2 (In (2 ) + 61) 

- ~~~~~~~1 1 + 1 - _ _ _ _ _______~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S p S {S-p S-(1-/5) s1-p P 

where Z' denotes a sum over the zeros of L(s, X) with 3 > 1/2 and where the zeros 
with 3 = 1/2 have a weight 2. 

Proof. We consider separately the cases k = 1 and k > 1. 
First suppose k 1. Using (3.3.1) with z = s, si, we get 

(3.3.5) f ) __ -() I (s+2) _ (si+2)} 
- 1 ( )1In(7r)-2 E (F(s, p)- i(u)F(sl,p)). 

PEZ(XO) 

By the functional equation of ((s), the last sum can be rewritten 

( Sp -(1p S1-(1-P)) 
where the notation is as in the statement of the lemma. 

Lemma 3.2.1, together with 

s S-1 51 -1 I - t2 <-? 

and (1 - s(o))/2 > 0.19498, yields the result. 
Now suppose k > 1. The proof is similar to the previous one, apart from the 

absence of the pole at s = 1. Following McCurley's Lemma 5 ([4]), we have 

f(t,x)= 2 n7r)+2-{ F 2 )'(fr ( 2 ) 

-' (F(s, p) -(a)F(s , p)) 
with a = (1 - X(-l))/2, and Lemma 3.2.1 gives the required estimate. D 

Using Lemmas 3.1.1 and 3.3.2, we get 
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Lemma 3.3.3. If X is a character of conductor k, then for itl > 1000 and El = 

0.0067 

f (t, X) 1-2 (o)(l (I t 1)+ i) 

and if t is the ordinate of a zero p/3 + iy with > 2 then 

f (t X) < --- (n2 )l_ +S( 

3.4. The default to primitivity. Let X be a primitive character of conductor k 
and let Xm be the primitive character associated with Xm, of conductor km. For a 
prime p dividing k we put 

(cp(a) = 1P 

(3.4.1) ~ K4a 1 ()vp( k) ~c(u)) (3.4.1) |Dp (k,a, X) ao acp (a) + E a, 2 (km) 
Ptkm 

where vp(x) is the p-adic valuation of x with vp(p) = 1. We seek a lower bound for 

D(k, C, X) = ln(p)Dp(kJ , X). 
pjk 

This bound will be D* (k, a), defined below: put 

D2* (a) = 5.99 c2(u), 
(3.4.2) j D3(of) = 5.467 C3(o), 

D D(a) = ao cp(ar), for p > 5, 
and 

(3 4 3) D* (k, a) = E In (p) D* (or). 
pf plk 

Lemma 3.4.1. The quantity cp(cr) is positive, and decreases as p increases or as 
af increases. 

Proof. Easy. O 

Lemma 3.4.2. We have 
1 - ~() - 1 > -0.298, 

C2 (U) 

1 - i(() - 1 > -0.328, 

l 2 ) - C5 (9) > 0. 

Proof. If - < a < c+, then 

2 - C5(U) < 2 - C5(<) C52 - (u) 

Cutting the interval [1, (1 + 2)/2] into 10000 parts yields the third inequality in 
the lemma. The two other inequalities may be obtained similarly. O 
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Lemma 3.4.3. For each prime p I k, we have D (k, a, X) > D*(). 

Proof. If p > 5, then C5(u) > cp(a), so by Lemma 3.4.2 and the fact that k1 =k, 
we see that for each prime dividing k, 

DP (/,,aX) = 
aocp(a) + Er m (1 2 VP k) - cp((a) 

p1km 

> aocp (af) = D* (a). 

The proof is analogous for p = 2 and p = 3. Note that when p = 2, if p t km, then 

vP (k-) > 2. The constant in D*(a) is ao - 0.298(a2 + a3 + a4), and the one in 

D* (a) is aO - 0.328 (a2 + a3 + a4) O 

Combining Lemmas 3.4.1 and 3.4.2 gives the desired result: 

Corollary 3.4.4. For 1 < a < (1 + 2)/2, we have D(k, a, X) > D* (k, a). Fur- 
thermore, on this interval D* (k, a) is a decreasing function of a, with 

ln(p) * 

ao _p > D* (k,) > 0. 

plk 

We finally need to go from an imprimitive character to a primitive one. 

Lemma 3.4.5. The notations being as above, we have 

f(0,xo) = f(O,x0) + Zln(p)cp(u-), 
plk 

and 
f(t, Xm) > f(t, Xm) - E ln(p)cp(f). 

pfk 

Proof. We have for any real number t, 

f (t, Xm) f (t, Xm) + 1: ln(p) E R (Xmt) n pv 
Ipn2C7 pnoli 

pfk n2>1 
p 

/n 

p{km 

If Xm = Xo and t 0, then Xm(pn)/pint = 1, otherwise its real part is > -1. O 

3.5. A positivity argument. The trigonometric polynomial 
4 

P(0) = E am cos(mO) 
m=0 

is also given by 
P(O) = 8(0.9126 + cos 0)2 (0.2766 + cos 0)2 

and thus is nonnegative. We have 
4 /1 K4tra 

(3.5.1) E amf(mt,Xm) =LEA(n) ( - (r)P(arg(X(n)n-it)) >0 
m=O n>1 / 

Recalling Lemma 3.4.5, we then get 
4 4 

(3.5.2) E amf(mt,xm) > aoLln(p)cp() - E am E ln(p)cp (u). 
m=O plk m=1 plk 

p{km 
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Lemma 3.5.1. We have 

a(f (0, Xo) + E ar (f (Mt, X) + 2 In (k)) > D* (k, ). 
M=1 

Proof. By the definition of D*(k, a), the inequality in the lemma follows from (3.5.2) 
if we have 

4 

a() 5 ln(p)cp(a) -E am E ln(p)cp(a) 
plk m=l plk 

(3.5.3) pk 

> 5ln(p)D (a) - ? am 
pl k m=1 

However, by Lemma 3.4.3 we have, prime by prime, 

aocp(a) + am (1 ( (ks) - (a)) > D*(a) 

which certainly implies (3.5.3). O 

3.6. The zero-free region. Inserting the bounds from Lemmas 3.3.1 and 3.3.3 
in the expression from Lemma 3.5.1, if t is taken to be the ordinate of a zero /3 + i-y 
with 0 > 1/2, and >y > 1000, we find that 
(3.6.1) 

[ I( E(u)] +ai [(1 2 ) (ln (2 ) +?1) - a1 dS(f)] 

4 a [1 ( ;(e)) (in (km Irn) + )+ (1 -<()o) n (k )] 

> D*(k,u). 

Recalling that n(u) = we can rewrite this as 

(3.6.2) u - u+ G > 0, 

where 

u -1 
-v5 am (In(klHyl+ E) a( 10 27r 

(3.6.3) a - (v5 + 1)/5 - 0.647213595, 
w a,/a( ~ 1.705118356, 

G = E(af)-wS(Of) + ( ?) 
a( 
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Put x = v/w-1 _ 0.305801806. A near-optimal value for a in (3.6.2) is (T= 1-+x/u. 
Using this, and the fact that 1HYj > 1000, we find that 1 < cr < 1.062, validating the 
bounds used in our estimates for E(ou) and S(u-). Inserting u- = 1 + x/u in (3.6.2) 
and replacing G by any lower bound = G(c), we find 

w u - 

u -oau v_x_/u - + - -G >0. 
1- + X/U x 

Solving for 1 - a and using (1 + l/x) = w/lx gives 

w x 
-uvl aQ,+/- G u 

Ix 

Using w - w = xV wand cross-multiplying by u/x2 yields 

I+ 
+ 1 G 

_(1 - 1) > 
x2 e1 cx_ x c 

Finally, using x = w - 1, we obtain 

(3.6.4) 1 >- > (c/x)u/x+(1/x2)G 

x2 l+(a / V/;) V/ E+(X /( W)) (x u) 

Note that 

(3.6.5) 2 = Rln(kjH/lCl), x 2 

where 

R = 1 A2- v 5 9.645908801, 

(3.6.6) 4 

C : 2iexp (-'61 - (1/A) E am ln(m)) 4.171838431. 
m=2 

An especially useful choice for the lower bound G in (3.6.4) occurs when D* (k, a) 
is replaced by a constant lower bound D, giving 

(3.6.7) C G(u) = E() - wS(u-) +- 
ao 

In particular, we can always take D = 0, or, if for some H > 1000 we are interested 
only in zeros: + &'y with I-/I > H, then by Corollary 3.4.4 we can take D to be the 
value of D* (k, u) corresponding to H. As will be seen, G > 0 on [1, 1.062]. 

Writing A = x/u, and taking G as in (3.6.7), put 

a 11 
G1(A) =- + - (1 +), x A x2 

Then GI (A)/G2 (A) is the fraction in the denominator of (3.6.4). 
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Lemma 3.6.1. For each D > 0, the functions G1(A)/G2 (A) and G(1 + A) as 
given by (3.6.7) are nonnegative and decreasing on [0, 0.062]. 

Proof. First suppose D = 0. Note that 

E(cr) = 1.08699 + 1.40018 A + 1.86576A + 2.32244A3/2 

and that (after some manipulations) 

1?A (1 + 45 4 - A + 4 (A2 + A) 

It follows that the derivatives of G(1 +A), G1(A) and G2 (A) are sums and quotients 
of various terms monotonic on [0,0.062]. Thus, on any given subinterval, rigorous 
upper bounds for 0' (1 + A) and G' (A), and a rigorous lower bound for G' (A), 
can be obtained. Dividing [0,0.062] into subintervals of length 0.001, it was found 
that G (1 + A) < 0 and GI(A) < 0 throughout the interval, and GI (A) > 0 on 
[0,0.057]. 

Graphically it is clear that G2 (A) has a maximum at about 0.0590 and then 
slowly decreases. To deal with the interval [0.057,0.062], multiply through by A. 
The derivatives of \A G1(A) and -A G2(A) are sums and quotients of mono- 
tonic terms. Dividing [0,0.062] into subintervals of length 0.001, it was found that 

A- G1(A))' < 0 on [0.047,0.062] and (\ A G2(A))' > 0 throughout [0, 0.062]. 
Combining these facts yields the monotonicity of G1 (A)/G2 (A). Its non- 

negativity and that of G(1 + A) follow by evaluation at A = 0.062. 
Now let D > 0 be arbitrary; let gi (A), 92(A) denote G1(A) and G2 (A) when 

D = 0. By the discussion above, it follows that g2 g/ - g91 g/ < 0 and gl < 0 
on [0, 0.062]. Applying the quotient rule to GI (A)/G2 (A), it is easily seen that for 
G1(A)/G2 (A) to be decreasing, it suffices to have 

x 

This was checked by the same means as before. O 

Theorem 3.6.2. If X is a character of conductor k, and R = 9.645908801, then 
any zero ,3 + i-y of L(s, X) with 1-yl > 1000 satisfies 

> 1 

Rln (41718) - 3.2356 In (41718) 

Proof. When , > 2, the result follows from (3.6.4), taking G = 0 (which is permis- 
sible by Lemma 3.6.1); here 3.2356 < co R/x/(1 + (ca/ w)v0.062). It is easy to 
check that the bound is decreasing in k and 1yl; when k = 1 and l = 1000, it is 
less than 0.02194. Thus the inequality holds when /3 < 2 as well. D 

Taking D = D* (k, v) in (3.6.7), we obtain a result better suited to the needs of 
this paper: recall that ca = (v5 + 1)/5, w = al/ao and x = w; - 1. 
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Theorem 3.6.3. If X is a character of conductor k, and H > 1000, then any zero 
/ + i^y of L(s, X) with 1^yj > H satisfies 

1 -13 Rln(k jy|/C (X)) 

where 

Cl (x) C= C(X, H) C= C exp (R A) 
t$ 3 /\G1+i) 

with A = I/(xR ln(kH/Ci)), G given by (3.6.7), and D = D* (k, 1 + A) by (3.4.3). 

Proof. When / > 1, the result follows from (3.6.4) and Lemma 3.6.1. To see that 
it holds for /3< K1 one can use the upper bound 11.624 > I (E(-) - wS(u-)), - 2' _ 

the upper and lower bounds for D* (k, u) from Corollary 3.4.4, and the fact that 
Iy > 1000 to show that 

RIn(kj^yj/Cj(X)) > 15. O 

Some examples 

For k =1, 1 > 545000000, 1 -/ > 1/(R ln(kKal/38.31)). 

For k = 3, Y> 10000, 1 -/ > 1/(R ln(kH^y1/20.92)). 
For k = 12, 1^YI > 10000, 1-3 > 1/(R ln(kl-yl/29.68)). 
For k = 17, 17y > 2500, 1-3 > 1/(R ln(klyl/20.90)). 
For k = 420, 1^yj > 2500, 1-3 > 1/(R ln(kjty1/56.59)). 

4. L-FUNCTIONS, O(X; k, I) AND O(X; k, l) 

Before drawing consequences from Theorem 3.6.3, we need some lemmas. 
In the following, we assume that the L-function under examination has no zero 

satisfying 

1^Yj > H > 1000, 

(41) { ~~~~~~RIn(kj|7|/Cj(x)) 

for some positive constants R and C1 (X) such that 

(4.2) R ln(j <)) >2. 

When R = 9.645908801, then taking k = 1 and -y = 1000 in Theorem 3.6.2 shows 
we can always use Ci(x) = 9.14; Theorem 3.6.3 gives sharper results. 

4.1. Preparatory lemmas. We restate McCurley's results before using them. 
First of all, let us note the following consequence of McCurley [5]: 
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Lemma 4.1.1 (McCurley). If X is a Dirichlet character of conductor k, if T > 1 
is a real number, and if N(T, X) denotes the number of zeros ,B + i-y of L (s, X) in 
the rectangle 0 < 13 < 1, 1jyl < T, then 

JN(T, X)--ln(n ) > < C2ln (kT) + C3 

with C2 0.9185 and C3 5.512. 

Our values of C2 and C3 correspond to the choice i1 = in McCurley's notation 
and are undoubtedly not optimal. (Note that our C2 is his C0, and our C3 is his 
C2.) If k > 1, Lemma 4.1.1 follows immediately from ([5, Theorem 2.11). When 
k = 1, it follows from the theorem of Rosser cited in ([5, formula 2.17]). 

Lemma 4.1.2. If k is the conductor of X, and L(s, X) satisfies GRH(H) for some 
H > 1, then 

- E(H) 
17 

- 

pcZ(x) 

with 

(4.1. 1) E(H) 1 ln2(H) + l2n ln(H) +C2+2 (n () ?C2 ln(k) +C3) 

Proof. We consider what happens for 1Iyl < 1 and for 1Iyl > 1. 
For 1I-y < 1, using GRH(1), we have 

(4.1.2) 
1 < 2N(1, X). 

PEZ(x) 

For -y > 1, one gets 

E l(fH~~~Hdt 1) 

1<1l<HIP l<I+l<H JlY ) 
PZ(x) Pe(X) 

H N(t,X) - N(1, X) N(H X)- N(1 ,X), 
11 ~t2 ~H 

thus 

I_N___) (Hi_ X N(1, X) 
(4.1.3) S < /;N t2x)dt+ N(Hx) 1 

PEZ(X) 

Now we easily finish the proof on using Lemma 4.1.1. E 
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Lemma 4.1.3. Let X be a character with conductor k, let m > 1 be an integer and 
X, xo be two real numbers such that x > xo > 1 and 2Rln2(kH/IC(X)) > Log(xo). 
Then 

S^ X X_H 
< x(A + B) + x(C + D), 

1yI?>H -y I?>H 
PEZ(X) Pz 00 

where, with C2 0.9185 and C3 = 5.512, we have 

IH 4 {W,.(2 +C2 }exP{t llk/C(X)) dt, 
1c k lnlnxo 

(4.1.4) | H +-exp - Rln(kH/0x(o)) }2(C2 ln(kH) + C3), 

0C= m?m(ln (2) +1), 

1 0~~~~~2 D Hm+l (2C2 ln(kH) + 2C3 +m+1 

Proof. The functional equation of the L-functions enables us to write 

xo x3 x1-(- _ x1 

(4.1.5) 5 + l +yIm ? jj ) 
1-y >H hdM 1 

IY>H I-Y >H d+ 

PCZ(X) PC:(X) PEZ(x) 

One of ,B and 1 - j is at most 1, the other is less than 
2~~~ 

Rln(kj'yI/C0(X)) 

We can split our upper bound in two pieces. For the first, 

(i) E n1 
1-yl>H 

an integration by parts assures that this sum is bounded by 0 + D. For the second, 

(ii) S(x) E x_ exp{R ln(x) ' 

I- I>H hd)M+l R ln(kj|7l/Cl (X)) 
PEZ(X) 

we have S(x)/x < S(xo)/xo, hence it remains to evaluate S(xo)/xo. Let us define 

1 
ex ln(xo) 

m(t) M+1 x R ln(kt/Cl (X)) 

and integrate it by parts: 

(4.1.6) xo S ( dt I (N(t, X) N (H, X)) (-4 (t)) dt 

PEZ(X) 
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But 
(pjt _m m + [2(k ln(xo)1 
pm(t) tln2(kt/Ci(X)) [-n /Ci(X))? (m+1)R 

and our hypothesis gives us -pj(t) > 0 for t > H. 
Lemma 4.1.1 gives us an upper bound for N(t, X) and we integrate back by 

parts. O 

Lemma 4.1.4. If k is the conductor of X, and L(s, X) satisfies GRH(1), we have 

(2) < 3.941n(k) + 12.7. 
pEZ(X) 

Proof. The contribution to the sum of the zeros with < < 1 is at most 'N(1, X). 
The contribution of the remaining ones is not more than 

4 y;N(t, X) -N(1X)dt=2N(1, X)+41 N(t X) dt, 

and on using Lemma 4.1.1, we obtain the result. O 

4.2. Computing A. The constant A is the dominant term in Lemma 4.1.3. 
However, the integral defining A converges slowly, and care is needed in evaluating 
it. This was forcefully brought home to us when we initially sought to compute 
A using the pre-programmed numerical integration of PARI. Lionel Reboul of the 
University of Lyon kindly verified the values by independent computations with 
MAPLE. To our surprise, the values were the same for ln(xo) > 40, but they were 
not close for small xo (for instance 0.032 instead of 0.034). 

We will first give a simple lemma (Lemma 4.2.1) which gives a rather good upper 
bound for A. Then we will describe a way for accurately computing A advocated by 
Rosser, Schoenfeld, and McCurley, which involves transforming the given integral 
to a sum of rapidly convergent incomplete Bessel integrals. 

For m > 2 let us define hm(t) by 

1 kt 1 02 
(4.2.1) hm(t) = (ln (-) + m1) + - 

wr(mrn-1)tm-l2wr rn-i mtrtm' 

Lemma 4.2.1. We have, under the hypothesis of Lemma 4.1.3, but with in addition 
Rln2(kH/Ci(X)) > ln(xo) and m > 2, 

| - H Rt In (k HI C,(X)) ) 

A > hm+1(H) exp&f ln(xoj))) l - m+l ( ) PtR In (k HI C (X))) 

Proof. Let us define 

(4.2.2) gm (t) = ( 2mr ) m+C2 
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Then, we readily see that h' (t) =-gm(t). We also have 

A= / ln(xo) dt 

hm(H) ex ln(xo) 
H P R ln(kH/Ci (X)) 

- ' (ln2 (kt/cl (X) ) - ln(xo )) ex(lRn(ktC X )) ) hm l2(kt/ ()dt 

hm(H) exp(_ ln(xo) 
- H P R ln(kH/Ci (X)) 

the last inequality holds because our hypothesis ensures that 

(lk2kH/C (X))- ln(xo) > >0 

For the other inequality, we write 

(4.2.3) A IH + m+1(t)exp( Rln(jtj? (x)))dt 

and an integration by parts yields the result. O 

We now turn to the accurate computation of A. Define 

Kn(z w) = 2/ u-exp[- ,(U +-]u 2J 2 u 

(4.2.4) Ur ln 
kH 

In(xo) Ci (x) 
Zn 2m ln(xo) 

Zm = 2 .R 

Then simple algebraic manipulations yield 

Lemma 4.2.2. There holds 

A_2 ln(xo _ l) ( k) 

+2 l Ci() (x k )m 

In(xo) (k rn+1 

+2C2 R(m+1) kC (X)) Ki(zm+1,Um+i). 

The tails in the integrals K1 and K2 can be estimated as follows. Write 

(4.2.5) erfc(x) 2 j e-t dt. 
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Lemma 4.2.3 (Rosser and Schoenfeld). Put y - for w > 1. Then 

Kz) <e Z|(1+3Xy)eY +(g+ 
zI) 1erfc(y 

/z) Ki(zw)< {(1 2yey? 8z- 2 

and 

K2(Z,w) < 2 1 +(L + y+2+-le-zY 2z 64 ~~128z 8 z 

105 + 5 + z) 4 erfc(y )z}. 

Lemma 4.2.4. Assume z > 0. 
The integrand in K1 (z, w) is decreasing in u for u > 1. 
The integrand in K2(z, w) is increasing for 1 < u < 1+ 1+z2 and decreasing in z 

u afterwards. 

Lemma 4.2.3 is accurate if w is large. Thus, K1 and K2 can be computed by 
integrating numerically from w to some finite bound and then using Lemma 4.2.3. 
In computing Table 1, this method was used in conjunction with Simpson's rule to 
get a sharp rigorous upper bound for A (within 1%). It should also be noted that R. 
Terras [13] has given a rapid continued fraction algorithm for computing integrals 
like K1 and K2. Although this algorithm does not produce a rigorous error bound, 
we have used it to give an independent check on the numerical integrations. 

4.3. Estimating ') and 0 through L-functions. We are now in a position to 
prove Theorem 1. To do so we want to use Theorem 3.6 of McCurley [5]. But in 
that theorem, the notation Z(X) denotes the set of zeros of L(s, X) with 0 < 3 < 1, 
so it is necessary to pay careful attention to the distinction between conductor 
and modulus. In [5], the zeros with a = 0 are removed with some cumbersome 
arguments (cf. [5, (3.25), (3.26), (3.27) and (3.38)]). The troubles caused by the 
use of imprimitive characters can also be seen in ([5, (3.15)]). 

However, it is possible to work from the beginning with primitive characters only. 
If X is a character modulo k, let XI be its associated primitive character. Given I 
prime to k, consider further 

X mod k 

If K is the largest divisor of k coprime to n, we have 

wk(ln) { 
(K) if n =_ I (mod K), 

n otherwise, 

which can be proved as follows: 

<(k)wk(l, n) = S (n) 
dlk X mod*d 

=5 E 5 x(n)xXl) = 5 x(n)x(l), 
djK X mod*d X mod K 
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where E mod d iS a summation over the primitive characters modulo d. We now 
consider 

*(x; k, I) =Wk(1, n) A(n). 
n<x 

We have (x; k, l) < *(x; k, l) < (x; k, I) + f (k) ln(x) for x > 1 with 

(4.3.1) f(k) ZE 1. 
plk 

We remark that f (k) < 3.5 if k has less than 12000 prime factors, which is true if k < 
exp(127000), and in any case f (k) = O(ln(ln(ln(k)))). Thus, we can work with 'b* 
instead of b with a small loss. Now McCurley's analysis ([5, ?3]) goes through with 
characters replaced by primitive characters since b* is also an increasing function. 
More precisely, McCurley's m(x) now becomes the order of the zero of L(s, Xi) at 
s = 0, i.e. m(x) = 0 if X(-l) =-1 or X is the principal character, and m(x) = 1 
otherwise. In McCurley's notation, this yields jd2 < 1/2. Following the proof of 
Lemma 3.5 of [5], we find further that if L(s, x) satisfies GRH(1) and X is not 
principal, then 

lb(X)I < 1.57+ 2 

pEZ(X) 

which, with Lemma 4.1.4 together with jb(Xo)I = ln(27w) yields "If every L-function 
of modulus k satisfies GRH(1), then Idi + d2 I< 3.94 ln(k) + 12.7" instead of Lemma 
3.5 of [5]. Finally, the right-hand side of ([5, (3.21)]) becomes 

(6x)M [2 2 + 3.94 ln(k) + 12.71 

An additional error term comes from replacing b* by b. The upper bound we get 
this way is an increasing function of x, so we can introduce the maximum max 

1 <y <x 
which is useful in practice. Thus we get 

Theorem 4.3.1 (McCurley). Let x > 1 be a real number, k > 1 an integer, m a 
positive integer, 8 a real number with 0 < 6 < x-2, and H a positive real number. 
Put 

A(m, 6) = mE () (1I+ j6)m+?. 

Suppose that for each X with modulus k, L(s, X) satisfies GRH(1). Then 

___k_ y x/3-1 ?(k) max 1b(y;k,l)- (k I <A 6) E l 

X PEZ(X) IP 

(4.3.2) - =o(k) [(f(k) + 0.5) ln(x) + 4 ln(k) + 13.4], 

and f (k) is given by (4.3.1). 
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We also wish to allow 0 instead of b which can be done by recalling Theorem 6 
of Rosser and Schoenfeld ([9]) 

(4.3.3) 0 < 0b(x; k, 1) - 0(x; k, 1) < 0 (x) - 0(x) < 1.0012 x + 3x3 for x > 0. 

Collecting our results, we finally get 

Theorem 4.3.2. Let k > 1 be an integer, and let H > 1000 be a real number such 
that every L-function with modulus k satisfies GRH(H). Put C = Ci (Xo, H), where 
Xo is the trivial character, and let xo be a real number such that R In2 (H/C) > 
ln(xo). Let m > 2 be an integer, and let 8 > 0 be a real number such that 0 < 8 < 
(xO - 2)/(mxo). 

Then for any x > xo we have 

(p(k) 1; k1_ y | < (1 + (1 + 6)m+D)m (p(k)((A?+i)? 1 
max 1,0(y; k) m ~~ (( + B) + (C?+D)) 

x 1'<k<m p p(k) 8 ~ 2 /-O 

+ ( m + 2)(E(H) + m + R, 2 V/2 x0o 2 

where A, B, C, D are those of Lemma 4.1.3 with Ci(X) replaced by C and with 
A estimated by Lemma 4.2.1, E(H) given by Lemma 4.1.2, and R given by (4.3.2) 
with x = xo. 

If A = p(k)(1.0012x 1/2 + 3x 2/3) and Z denotes the error bound above, then 
Z + A is an upper bound for 

(p(k) max 0(y; k, 1) - 
x i<y<x (o (k) 

Proof. We use Theorem 4.3.1 and evaluate the sums over the zeros by appealing to 
Lemmas 4.1.2 and 4.1.3. We also remark (cf. [8]) that 

(4.3.4) A (T m ) < (1+( Dm+) 8m 

Theorem 4.3.2 has been stated in such a way as to make its implementation as 
simple as possible, and to minimize the numerical input required. For a stronger 
version which yields slightly better results, see Theorem 5.1.1 below. 

4.4. Heuristic control of the values of m, 8 and E. Let ck(m, 6) denote the 
expression Z + A in Theorem 4.3.2, and let Sk be its minimum value as m and 8 
vary. This optimization is achieved in practice by first minimizing over 8 (with m 
held fixed) using any standard minimization algorithm, and then minimizing over 
m. 

In this section we aim to heuristically estimate the optimal values of m and 8 
and the order of magnitude of Ek, together with their dependence on k and H. 
Under the hypothesis of Theorem 4.3.2, we note that in the formula for Z + A: 

(1) (1 + (1 + ?)m+1)m/6m is equivalent to 2m/8m if m8 tends to 0. 
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(2) (A + B + (C + D)/ Vx) can be approximated by In (kH) /(7rnHm) for large 
H and xo. 

(3) (1 +m6/2)E(H)xU1/2 is asymptotic to xU 1n2 (H) as H goes to infinity and 
6 to 0. For large xo it is negligible. 

(4) R is 0(k ln(kxo)/xo) when xo goes to infinity. For xo large it is negligible. 
(5) For large xo, A is negligible. 
Hence our Fk can be approximated by 

(4.4.1) f(n, 6) 2+ 2 (6Hyl ;) 

We reduce this expression once more; numerically, it happens that the values of 
m are almost always near 7. We replace the term ( ) 2 by (2) m where m 
is an estimation of the value of m and we finally consider 

(4.4.2) f(m,6) 
a 

+ m 
(6B)m 2 

with 

(4.4.3) a =o(k)n( 2rj) and B=2. 
2 rm2 

We now let m vary continuously. Then 

Of Of 0 
06 &m 

yields 
{ a _ 

(6B)m 2 

a6 
(6B)m ln(2B) 

hence 

2e 
6- H' m ln(aH/e), 

6) M + 6 H~o(k)(kH \ 
(4.4.4) f (m, 6) (m +1) ln ln( ) 2 (- 27Tr \2 - H 

It is striking that in this approximation, 6 depends neither on m nor on k. We 
have verified this numerically (6 is almost constant). The other striking thing is 
that f(m, 6) (our 6k) depends on k mainly through ln(Q(k)); we find numerically 
that our Fk'S increase very slowly when k increases. This is rather surprising since 
there are o(k) sums to evaluate, so we might have expected Fk to depend on k by 
a multiplicative factor p(k). 
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5. NUMERICAL ESTIMATES FOR 0 AND b 

In this section, we present the numerical estimates one can deduce from the 
results in ??2, 3, and 4. Since the analytic bounds only become useful for xo ? 1010, 
we have supplemented them with a tabulation for low heights. 

The following notation is used throughout: 

f. (0, x,k) max max 10(y;k, ) - /'R(k) I 

E((, x, k) = max max 1(Y; k, I)- y/(k(k)). 

The computations for the tables were performed on PCs using the Intel 80486 
processor. The 80486-DX was used in Extended Precision mode, where it calculates 
with an 80-bit word having a 1-bit sign, a 15-bit exponent, and a 64-bit mantissa. 
It carries approximately 19.2 decimal digits of accuracy, and can represent numbers 
over the range 10-4392 to 104392. In Tables 1 and 2, the results are reported to 6 
digits of accuracy, and were rounded up in their last digit. 

As a verification, independent computations were done using the calculator GP 
of PARI, and some randomly chosen values were checked, with satisfying agreement. 

5.1. Asymptotic results for xo > 1010. 

Theorem 1. For any triple (k, c, xo) given by Table 1, 

(0, x, k) < E for x > xo, 

| (, X, k) < E for x > xo. 

Table 1 contains the best known bounds for all the moduli covered by Rumely's 
L-series calculations. The bounds were computed using a strong form of Theorem 
4.3.2, which broke the error term into its contributions from each individual L- 
series, and replaced the estimates for E(H) by tabulated values: 

Theorem 5.1.1. Let k > 1 be an integer. For each character X modulo k, let 
Hx > 1000 be such that L(s, x) satisfies GRH(Hx); we suppose H. = Hx for all 
X, and put C1(X)- C(X, Hx) Let xo > 10 be a real number such that for each d 
dividing k, and each X with conductor d, 2R . ln2(dHI/C, (x)) > ln(xo). Let m be a 
positive integer, and let 6 > 0 be a real number such that 0 < 6 < (xo - 2)/(mxo). 
For each X with conductor d, let Ax, Bx, Cx, Dx be the constants from Lemma 
4.1.3 computed using d and HX; let Ex be a tabulated bound for ZpEZ(x) l/pL Let 

1 ?1<HX 
R? be as in Theorem 4.3.1. 

Then for x > xo 

? (0 X,k) < 2A(m, 6) E [Ax + Bx + (Cx + Dx)/ xo] 
x 

+ (1+ m6/2) .(z x) + m6/2 +R 
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TABLE 1. Analytic epsilons for x > xo 

The values reported are E = max(c(O, xo, k), F(~b, xo, k)), and have been rounded 
up in the last decimal place (our notation is as in (5.1) of the paper). 

k 1010 1013 1030 10100 k 1010 1013 1030 10100 

1 0.000213 0.000015 0.000001 0.000001 46 0.012682 0.009592 0.009012 0.007046 
2 0.000213 0.000015 0.000001 0.000001 47 0.018044 0.010720 0.010012 0.008148 
3 0.002238 0.001951 0.001813 0.001310 48 0.011080 0.008876 0.008319 0.006373 
4 0.002238 0.001943 0.001809 0.001324 49 0.017015 0.010461 0.009773 0.007891 
5 0.002785 0.002250 0.002105 0.001606 50 0.012214 0.009447 0.008851 0.006861 
6 0.002238 0.001951 0.001813 0.001310 51 0.014479 0.009803 0.009191 0.007312 
7 0.003248 0.002406 0.002258 0.001770 52 0.012671 0.009058 0.008475 0.006656 
8 0.002811 0.002257 0.002116 0.001634 53 0.019206 0.010734 0.010011 0.008188 
9 0.003228 0.002380 0.002235 0.001759 54 0.011579 0.009061 0.008492 0.006572 

10 0.002785 0.002250 0.002105 0.001606 55 0.016306 0.010159 0.009493 0.007591 
11 0.004125 0.002590 0.002421 0.001954 56 0.012961 0.009462 0.008865 0.006969 
12 0.002781 0.002241 0.002099 0.001610 57 0.015636 0.010300 0.009640 0.007691 
13 0.004560 0.002657 0.002478 0.002020 58 0.014102 0.010007 0.009398 0.007440 
14 0.003248 0.002406 0.002258 0.001770 59 0.020659 0.011057 0.010299 0.008451 
15 0.008634 0.007628 0.007088 0.005045 60 0.010879 0.008740 0.008182 0.006204 
16 0.008994 0.007938 0.007392 0.005393 61 0.021073 0.011080 0.010315 0.008475 
17 0.010746 0.008587 0.008047 0.006203 62 0.014535 0.010088 0.009468 0.007527 
18 0.003228 0.002380 0.002235 0.001759 63 0.015473 0.010048 0.009409 0.007510 
19 0.011892 0.009442 0.008852 0.006838 64 0.014938 0.010019 0.009400 0.007530 
20 0.008501 0.007465 0.006950 0.005024 65 0.018025 0.010412 0.009697 0.007837 
21 0.009708 0.008143 0.007582 0.005625 66 0.011685 0.008844 0.008276 0.006357 
22 0.004125 0.002590 0.002421 0.001954 67 0.022414 0.011252 0.010451 0.008620 
23 0.012682 0.009592 0.009012 0.007046 68 0.014691 0.009884 0.009272 0.007412 
24 0.008173 0.007107 0.006615 0.004775 69 0.017285 0.010536 0.009835 0.007944 
25 0.012214 0.009447 0.008851 0.006861 70 0.012809 0.009431 0.008821 0.006862 
26 0.004560 0.002657 0.002478 0.002020 71 0.023269 0.011310 0.010484 0.008672 
27 0.011579 0.009061 0.008492 0.006572 72 0.012665 0.009118 0.008546 0.006759 
28 0.009908 0.008298 0.007741 0.005800 74 0.015830 0.010323 0.009668 0.007768 
29 0.014102 0.010007 0.009398 0.007440 75 0.016346 0.010341 0.009659 0.007724 
30 0.008634 0.007628 0.007088 0.005045 76 0.015819 0.010331 0.009671 0.007751 
31 0.014535 0.010088 0.009468 0.007527 77 0.020600 0.010854 0.010076 0.008235 
32 0.011103 0.008857 0.008300 0.006399 78 0.012621 0.009108 0.008514 0.006625 
33 0.011685 0.008844 0.008276 0.006357 80 0.014527 0.009700 0.009085 0.007218 
34 0.010746 0.008587 0.008047 0.006203 81 0.019611 0.010834 0.010094 0.008264 
35 0.012809 0.009431 0.008821 0.006862 82 0.016744 0.010524 0.009843 0.007953 
36 0.009544 0.007900 0.007372 0.005563 84 0.012721 0.009304 0.008703 0.006792 
37 0.015830 0.010323 0.009668 0.007768 85 0.021395 0.010990 0.010205 0.008353 
38 0.011892 0.009442 0.008852 0.006838 86 0.017180 0.010598 0.009904 0.008025 
39 0.012621 0.009108 0.008514 0.006625 87 0.019865 0.010903 0.010152 0.008278 
40 0.010833 0.008627 0.008084 0.006183 88 0.016484 0.010131 0.009474 0.007646 
41 0.016744 0.010524 0.009843 0.007953 90 0.012817 0.009413 0.008809 0.006884 
42 0.009708 0.008143 0.007582 0.005625 91 0.023159 0.011148 0.010314 0.008484 
43 0.017180 0.010598 0.009904 0.008025 92 0.017508 0.010574 0.009872 0.008009 
44 0.011798 0.008871 0.008310 0.006440 93 0.020727 0.011013 0.010245 0.008375 
45 0.012817 0.009413 0.008809 0.006884 94 0.018044 0.010720 0.010012 0.008148 
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TABLE 1 (continued) 

k 1010 1013 1030 10100 k 1010 1013 1030 10100 

95 0.023180 0.011282 0.010444 0.008570 144 0.018241 0.010486 0.009772 0.007976 
96 0.014710 0.009886 0.009271 0.007395 150 0.016346 0.010341 0.009659 0.007724 
98 0.017015 0.010461 0.009773 0.007891 154 0.020600 0.010854 0.010076 0.008235 
99 0.020644 0.010823 0.010051 0.008238 156 0.018025 0.010363 0.009653 0.007827 

100 0.016476 0.010310 0.009631 0.007737 162 0.019611 0.010834 0.010094 0.008264 
102 0.014479 0.009803 0.009191 0.007312 163 0.044431 0.012935 0.011505 0.009799 
104 0.018292 0.010424 0.009715 0.007922 168 0.017995 0.010459 0.009740 0.007882 
105 0.017707 0.010434 0.009708 0.007787 169 0.042497 0.012769 0.011383 0.009670 
106 0.019206 0.010734 0.010011 0.008188 170 0.021395 0.010990 0.010205 0.008353 
108 0.015635 0.010079 0.009441 0.007589 174 0.019865 0.010903 0.010152 0.008278 
110 0.016306 0.010159 0.009493 0.007591 180 0.018004 0.010482 0.009763 0.007903 
111 0.023287 0.011261 0.010425 0.008589 182 0.023159 0.011148 0.010314 0.008484 
112 0.018184 0.010498 0.009777 0.007942 186 0.020727 0.011013 0.010245 0.008375 
114 0.015636 0.010300 0.009640 0.007691 190 0.023180 0.011282 0.010444 0.008570 
116 0.020143 0.010962 0.010209 0.008353 198 0.020644 0.010823 0.010051 0.008238 
117 0.023222 0.011135 0.010306 0.008499 210 0.017707 0.010434 0.009708 0.007787 
118 0.020659 0.011057 0.010299 0.008451 216 0.023480 0.011154 0.010324 0.008542 
120 0.014495 0.009785 0.009169 0.007257 222 0.023287 0.011261 0.010425 0.008589 
121 0.031939 0.012053 0.010963 0.009223 234 0.023222 0.011135 0.010306 0.008499 
122 0.021073 0.011080 0.010315 0.008475 242 0.031939 0.012053 0.010963 0.009223 
124 0.021008 0.011055 0.010285 0.008436 243 0.043836 0.012879 0.011458 0.009740 
125 0.029581 0.011885 0.010860 0.009072 250 0.029581 0.011885 0.010860 0.009072 
126 0.015473 0.010048 0.009409 0.007510 256 0.036558 0.012394 0.011179 0.009461 
128 0.022035 0.011123 0.010336 0.008526 286 0.033703 0.012101 0.010952 0.009218 
130 0.018025 0.010412 0.009697 0.007837 326 0.044431 0.012935 0.011505 0.009799 
132 0.016320 0.010123 0.009461 0.007593 338 0.042497 0.012769 0.011383 0.009670 
134 0.022414 0.011252 0.010451 0.008620 360 0.028267 0.011631 0.010644 0.008854 
138 0.017285 0.010536 0.009835 0.007944 420 0.027757 0.011602 0.010617 0.008766 
140 0.017989 0.010523 0.009796 0.007898 432 0.039660 0.012542 0.011234 0.009519 
142 0.023269 0.011310 0.010484 0.008672 486 0.043836 0.012879 0.011458 0.009740 
143 0.033703 0.012101 0.010952 0.009218 

If /\ = (k)(1.0012xU 1/2+3xo 2/3), and Z denotes the above bound for c(b, x, k), 
then 

c(O, x, k) < Z+. 

If k is not of the form k = 2k' with k' odd, and k 74 1, then the values reported 
in Table 1 are the minimal values of the expression Z + A in Theorem 5.1.1, when 
2-< m < 14 and 6 ranges over its allowable values. The minima were found using 
Brent's golden section/parabolic interpolation algorithm ([7, p. 283]). It should 
be noted that as xo and the H. vary, different terms in the expression become 
dominant. Heuristically the best estimate is obtained using GRH data to height 
H ' 4e7r xo/(<(k) . ln(xo)). The values in Table 1 are minima over the following 
data sets: 

(A) Rumely's L-series and zeta data, using T = 2500 data for k < 13, 
(B) Rumely's L-series and zeta data, using T = 5000 data for k < 13, 
(C) Rumely's L-series and zeta data, 
(D) Rumely's L-series data + Lehman's zeta data, with T= 12030, 
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(B) Rumely's L-series data + vdL, teR, Winter zeta data to T - 105, 
(F) Rumely's L-series data + vdL, teR, Winter zeta data to T - 106, 
(G) Rumely's L-series data + vdL, teR, Winter zeta data to T 1 i07, 
(H) Rumely's L-series data + vdL, teR, Winter zeta data to T 545439823. 

If k = 2k' with k' odd, and if N is the order of 2 in (Z/k'7) x, then for (k, 1) = 1 

j b(x; k, 1) - 0b(x; k', 1) I < (1/N) ln(x) + ln(2), 

0(x; k, 1) - 0(x; k', 1)I < ln(2). 

For the values of xo considered in Table 1, these inequalities yield estimates for 
c(O, x, k), E(b, x, k) better than those provided by Theorem 5.1.1 directly, and are 
the ones reported. It will be observed that the bounds for k and k' in Table 1 are 
always the same: the additional term in the error estimate was swallowed up when 
the values were rounded up to the nearest 10-6. 

Finally, when k = 1, 2 the xo - 1010 entry in Table 1 is derived from the main 
table of Rosser and Schoenfeld ([9]), which gives ?(V), e23, 1) = 0.00020211; this 
improves on the value 0.000272 given by Theorem 5.1.1. 

5.2. Estimates over the range 0 - 1010. In Table 2 we compare 10(x; k, 1) - 
x/p(k)I and 10(x; k, 1) - x/&(k)I with Ex, reporting the maximum ratio for 0 < 
x < 1010 for each k. Tabulations over the subintervals [10', 10h+1] show that 
the results are remarkably stable and uniform over the entire range, so that Table 
2 gives a good representation of the true error. The only exception is for very 
small moduli (k < 6) where the initial primes distort the error estimates; more 
accurate asymptotic values are given at the end of the table for these moduli. Let 
N(k, 1) be the number of solutions to a2 I 1 (mod k) with 0 < a < k. The function 
(x-N(k, 1) x)/p(k) usually gives a better approximation to 0(x; k, 1) than x/Ip(k); 
we have also tabulated the maximal ratios IO(x; k, 1) - (x -N (k, 1) x) /p(k) 1x. 

We can summarize the main results of Table 2 as follows: 

Theorem 5.2.1. For all the moduli in Table 1, uniformly over the range 0 < x < 
1010, the following bounds hold: 

10(x; k, I) -x/9(k) |< 2.072a,X- 

(x; k, l 
x -xN(k I ) 

a 
X 

< 1.174v/x, 

1(; (xk k, l ) -- x (k) < 1.745ao(k. 

If k = 5, k > 7 or x > 224, then 

I 0 (x; k, I) - x (k)| < ,,x; 

for k = 1,3,4 this holds if x > 14. 

Corollary 5.2.2. For these moduli, over the range 0 < x < 1010, 

c(O,x,k) 7< ~p(k) _k__ 

(0, x,k) < 2. 072, i? , sj(Ox,k) < 1.745 g-I 

for k = 5 or k > 7,c Q(?, x, k) < (k)/ x. 
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TABLE 2. Tabulations 0 - 1010 

k: The modulus. 
0: (Ikamax max I 10(x; k, 1) - x/so(k)I/ x/ 

(1,k)=lI (0,10101 

#: (max maOx 0(x;k,1)-(x-N(k,l) I x))/(k)l/x, 

(1) where N(k, 1) is the number of solutions to a2 - 1 (mod k) 
': max max I k b(x; k, 1) - x/p(k) I/ x 

(1.k)=~1 (0,1010] 

Except for the 'V-values for a few small moduli, the bounds for 0, O# and Xb are 
remarkably good throughout the range 0 - 1010. All values have been rounded up 
in the last decimal place. 

k 0 _ # _ _ k 0 _ # _ 

1 2.052818 1.052818 1.414214* 39 0.769446 0.666830 0.668572 
2 2.071193 1.071193 1.744754* 40 1.076203 0.813546 0.816561 

3 1.798158 1.053542 1.070833* 41 0.818620 0.818620 0.817634 
4 1.780719 1.034832 1.118034* 42 1.130693 0.863011 0.813182 

5 1.412480 0.912480 0.886346* 43 0.832936 0.785317 0.784932 

6 1.798158 1.173049 1.322876* 44 0.873277 0.873277 0.871473 
7 1.105822 0.829249 0.779283 45 0.844820 0.844820 0.844864 

8 1.817557 1.000000 0.926535 46 0.973114 0.882205 0.881655 
9 1.108042 0.899812 0.788900 47 0.744386 0.787865 0.790079 

10 1.412480 0.912480 0.961267* 48 1.096688 0.870037 0.876180 
11 0.976421 0.885771 0.878823 49 0.744132 0.696513 0.697158 
12 1.735502 1.000000 0,906786* 50 0.821890 0.832182 0.762408 
13 0.892444 0.741007 0.737610 51 0.817323 0.770458 0.771552 

14 1.105822 0.829249 0.897528 52 0.884117 0.837232 0.837318 

15 1.097307 0.769689 0.760264 53 0.829958 0.791497 0.725979 

16 1.253606 0.771116 0.773805 54 0.881762 0.789677 0.794864 
17 1.001057 0.876057 0.873548 55 0.795133 0.795133 0.798504 

18 1.108042 0.899812 0.824180 56 0.981635 0.828677 0.833854 
19 1.001556 0.911763 0.911536 57 0.834201 0.834201 0.833807 
20 1.276501 0.776501 0.800391 58 0.793283 0.744371 0.745533 

21 1.130693 0.863011 0.805421 59 0.710444 0.724352 0.710444 

22 0.976421 0.885771 0.879312 60 1.056320 0.749787 0.748270 
23 0.973114 0.882205 0.880877 61 0.719386 0.715829 0.717979 
24 1.703144 1.000000 0.744935 62 0.771883 0.838550 0.845276 

25 0.821890 0.832182 0.764098 63 0.847851 0.736979 0.750188 

26 0.892444 0.744403 0.744403 64 0.842522 0.781042 0.779800 
27 0.881762 0.789677 0.795451 65 0.753091 0.753091 0.753171 

28 1.039662 0.764535 0.775919 66 0.797466 0.779343 0.788725 

29 0.793283 0.744371 0.745590 67 0.708427 0.738730 0.731833 
30 1.097307 0.769689 0.760264 68 0.803940 0.803940 0.805077 
31 0.771883 0.838550 0.845276 69 0.740573 0.732708 0.733806 
32 1.015064 0.866076 0.860459 70 0.865028 0.782493 0.779932 
33 0.797466 0.779343 0.788725 71 0.750488 0.750488 0.750488 
34 1.001057 0.876057 0.874371 72 1.062100 0.754145 0.765297 
35 0.865028 0.782493 0.779932 74 0.867916 0.816491 0.815422 
36 1.163674 0.830341 0.829482 75 0.729046 0.684061 0.685155 
37 0.867916 0.816491 0.815422 76 0.771532 0.768761 0.702507 

38 1.001556 0.911763 0.911624 77 0.690677 0.690677 0.690677 
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TABLE 2 (continued) 

k 0 _# ____ k 0 O# X 

78 0.769446 0.666830 0.668572 130 0.753091 0.753091 0.753171 
80 0.806030 0.774123 0.773105 132 0.834519 0.762402 0.763278 
81 0.757028 0.757028 0.757028 134 0.708427 0.738730 0.731833 
82 0.818620 0.818620 0.817634 138 0.740573 0.732708 0.733806 
84 0.811175 0.805972 0.805906 140 0.737551 0.764606 0.769112 
85 0.694146 0.694146 0.694146 142 0.750488 0.750488 0.750488 
86 0.832936 0.785317 0.784932 143 0.713437 0.713437 0.713437 
87 0.688240 0.759668 0.688240 144 0.753220 0.680366 0.680366 
88 0.780273 0.742456 0.741766 150 0.729046 0.684061 0.685155 
90 0.844820 0.844820 0.844864 154 0.690677 0.690677 0.690677 
91 0.688707 0.688707 0.688707 156 0.789471 0.789471 0.790208 
92 0.728679 0.720354 0.719766 162 0.757028 0.757028 0.757028 
93 0.691390 0.758056 0.691390 163 0.719154 0.719154 0.719154 
94 0.744386 0.787865 0.790048 168 0.699889 0.674579 0.674416 
95 0.698739 0.732484 0.698739 169 0.718525 0.718525 0.718525 
96 0.825985 0.744111 0.742971 170 0.694146 0.694146 0.694146 
98 0.744132 0.696513 0.697303 174 0.688240 0.759668 0.688240 
99 0.740587 0.691390 0.691390 180 0.723937 0.723937 0.723937 

100 0.813770 0.813770 0.812489 182 0.688707 0.688707 0.688707 
102 0.817323 0.770458 0.771552 186 0.691390 0.758056 0.691390 
104 0.723333 0.767924 0.765581 190 0.698739 0.732484 0.698739 
105 0.653897 0.653897 0.653897 198 0.740587 0.691390 0.691390 
106 0.829958 0.791497 0.725979 210 0.653897 0.653897 0.653897 
108 0.764890 0.722346 0.661992 216 0.698739 0.698739 0.698739 
110 0.795133 0.795133 0.795133 222 0.698739 0.754294 0.698739 
111 0.698739 0.754294 0.698739 234 0.698739 0.698739 0.698739 
112 0.740472 0.740472 0.742195 242 0.711433 0.717617 0.711433 
114 0.834201 0.834201 0.834201 243 0.719154 0.731499 0.719154 
116 0.764606 0.751262 0.700136 250 0.709028 0.709827 0.709028 
117 0.698739 0.698739 0.698739 256 0.714815 0.714815 0.714815 
118 0.710444 0.724352 0.710444 286 0.713437 0.713437 0.713437 
120 1.032367 0.672746 0.672746 326 0.719154 0.719154 0.719154 
121 0.711433 0.717617 0.711433 338 0.718525 0.718525 0.718525 
122 0.719386 0.715829 0.716087 360 0.707926 0.707926 0.707926 
124 0.691390 0.749162 0.691390 420 0.688445 0.688445 0.688445 
125 0.709028 0.709827 0.709028 432 0.717112 0.717112 0.717112 
126 0.847851 0.736979 0.750188 486 0.719154 0.731499 0.719154 
128 0.754709 0.817209 0.817799 

(*) The tb-bounds for small k and x are distorted by powers of p = 2, 3. If the 
range 0- 1010 is replaced by 1500 - 1010, the bounds are much improved, as shown 
below. Alternatively, a tb-bound of 1.0 holds for Xo < x < 1010, with X0 as below: 

k : 1500 - 101o a 

1 0.790594 8 
2 0.805589 224 
3 0.764104 14 
4 0.879669 14 
5 0.806086 0 
6 0.785064 62 
10 0.792735 0 
12 0.862547 0 
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Table 2 was computed by using a sieve. First, 0 and fb were computed for each 
arithmetic progression. All three functions 

[0(x, k, 1) - x/ (k)]/ x, [x (x, k, 1) - x/ (k)]/ x, 

[0(x; k, 1) - (x - N(k, 1) x)/f (k)]/ x 

are monotone decreasing between their jumps at primes or prime powers. Thus, to 
determine their maximal absolute values over a given interval, it suffices to check 
their values at the endpoints of the interval, and their left and right limits at primes 
and prime powers within the interval. 

Considerable roundoff error can accumulate in summing 109 or more floating 
point numbers. To assure the accuracy of the computations, upper and lower 
bounds for 0 and Xb were computed by first rounding all the logarithms up and 
down to the nearest 2-30. After this truncation, the upper and lower bounds could 
essentially be computed by integer arithmetic, e.g. without roundoff error, and 
0 and Xb were replaced by their bounds in such a way as to assure that Table 2 
gave rigorous upper bounds. (This choice of the truncation would have allowed the 
computation to continue as high as 1.7 x 1010, considerably beyond its actual limit 
of 1010.) Finally, the values were rounded up in their last digit. 

ACKNOWLEDGEMENTS 

Ramare wishes first of all to thank his advisor J.-M. Deshouillers who, after 
having suggested this problem, gave good directions for the research. Then we 
warmly thank L. Reboul who verified many of the computations, and Professors 
M. Balazard and A. Odlyzko for their useful comments. We also wish to thank the 
referee, who found some errors in an earlier version of the paper. 

REFERENCES 

1. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, with an appendix by P. 
Bateman, 3rd edition, Chelsea, New York, 1974. 

2. J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function 
in the critical strip. IV, Math. Comp. 46 (1986), 667-681. 

3. K. S. McCurley, Explicit estimates for functions of primes in arithmetic progressions, Ph.D. 
thesis, University of Illinois at Urbana-Champagne, 1981. 

4. , Explicit zero-free regions for Dirichlet L-functions, J. Number Theory 19 (1984), 
7-32. 

5. , Explicit estimates for the error term in the prime number theorem for arithmetic 
progressions, Math. Comp. 42 (1984), 265-285. 

6. , Explicit estimates for O(X; 3, 1) and 4'(X; 3, 1), Math. Comp. 42 (1984), 287-296. 
7. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes, Cambridge Univ. 

Press, Cambridge, 1986. 
8. J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. M\iath. 63 (1941), 

211-232. 
9. J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions 0(X) and V)(X), 

Math. Comp. 29 (1975), 243-269. 
10. R. Rumely, Numerical computations concerning the ERH, Math. Comp. 62 (1993), 415-440. 
11. L. Schoenfeld, Sharper bounds for the Chebyshev functions 0(X) and V/(X). II, Math. Comp. 

30 (1976), 337-360. 



PRIMES IN ARITHMETIC PROGRESSIONS 425 

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE DE NANCY I, URA 750, 54506 VAN- 

DOEUVRE CEDEX, FRANCE 

. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602 

12. S. B. Stechkin, Rational inequalities and zeros of the Riemann zeta-function, Trudy Mat. 
Inst. Steklov. 189 (1989), 110-116; English transl. in Proc. Steklov Inst. Math. 189 (1990), 
127-134. 

13. R. Terras, A Miller algorithm for an incomplete Bessel function, J. Comput. Phys. 39 (1981), 
233-240. 


	Cit r383_c387: 


